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Abstract 

This paper explores the impact of residential density on households’ vehicle type and usage 
choices using the 2001 National Household Travel Survey (NHTS).  Attempts to quantify the 
effect of urban form on households’ vehicle choice and utilization often encounter the problem 
of sample selectivity.  Household characteristics that are unobservable to the researchers might 
determine simultaneously where to live, what vehicles to choose, and how much to drive them. 
Unless this simultaneity is modeled, any relationship between residential density and vehicle 
choice may be biased.  This paper extends the Bayesian multivariate ordered probit and tobit 
model developed in Fang (2008) to treat local residential density as endogenous.  The model 
includes equations for vehicle ownership and usage in terms of number of cars, number of trucks 
(vans, sports utility vehicles, and pickup trucks), miles traveled by cars, and miles traveled by 
trucks.  We carry out policy simulations which show that an increase in residential density has a 
negligible effect on car choice and utilization, but slightly reduces truck choice and utilization.  
We also perform an out-of-sample forecast using a holdout sample to test the robustness of the 
model.   
 
 
* Corresponding author.   
The authors gratefully acknowledge financial support from the University of California, Irvine 
School of Social Sciences and the University of California Transportation Center.  Kara 
Kockelman provided many useful comments on an earlier draft, and Phillip Li provided excellent 
research assistance but the authors bear sole responsibility for any errors. 
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1. Introduction 

Attempts to quantify the effect of urban form on households’ vehicle choice and utilization often 
encounter the problem of sample selectivity. That is, household characteristics that are 
unobservable to the researchers might determine simultaneously where to live, what vehicles to 
choose, and how much to drive. Unless this simultaneity is modeled, any relationship between 
residential density and vehicle choice may be biased. In this paper, we study to what extend 
residential density affects households’ vehicle ownership and vehicle miles traveled, using a 
Bayesian approach that corrects for the endogeneity of the density choice. Moreover, we perform 
an out-of-sample forecast using the estimates obtained to test the robustness of the model.  

The purpose for studying a more precise relationship between residential density and 
households’ vehicle type choice and utilization is to provide a piece of evidence for or against 
using residential density as a tool to control people’s travel behavior, a proposal often explored 
in urban literature (Cervero and Kockelman 1991, Dunphy and Fisher 1996, Ewing and Cervero 
2001, Brownstone and Golob 2009, Bento et al 2005 etc.).  

The paper extends the models developed in Fang (2008) to treat local residential density 
as endogenous.  The model includes equations for vehicle ownership and usage in terms of 
number of cars, number of trucks, miles traveled by cars, and miles traveled by trucks1. Number 
of cars and trucks are modeled as multivariate ordered probit, and usage of cars and trucks are 
modeled as multivariate Tobit, both at a disaggregate level. Residential density at the census 
block level is added to the system as an additional dependent variable. As a whole, we will 
estimate a simultaneous residential density and vehicle ownership and usage model system. As 
such, we need additional exogenous covariates in the density equation other than the explanatory 
variables used in the vehicle ownership and usage equations to identify the system. The extra 
exogenous variable, or the instrumental variable, we use in this study is the average density for a 
tract’s MSA, following Brueckner and Largey (2008). The basic assumption is that the average 
MSA density is correlated with the density at a more localized level, such as at the census block 
or tract level, but is uncorrelated with the unobserved factors that influence households’ choice 
of vehicle ownership and utilization. We argue that people’s decisions on what types of vehicles 
to drive and how much to drive are only influenced by immediate areas surrounding where they 
live, and not by density at the MSA level. Therefore, the average MSA density variable should 
be excluded from the vehicle ownership and utilization equations, while included in the localized 
density equation.  

The practice of using variables at a more aggregate level as instrumental variables could 
also be found in Evan, Oates, and Shwab (1992), which discovers from their data set that two 
thirds of the families who chose to move in the last five years from their current residency, 
moved within the same metropolitan area. The analysis thereafter in this paper is conditional on 
the metropolitan area people live in, but unconditional on where in the metropolitan area people 
choose to reside. If the unobserved characteristics also influence a household’s decision on 
which metropolitan area to live, then the average MSA density will no longer be a valid 
instrument.  

Other than addressing the endogeneity issue, this paper differs from Fang (2008) in two 
other aspects. Fang only uses the California subsample from the 2001 National Household Travel 
                                                 
1Car is defined as automobile, or station wagon; truck refers to van, sports utility vehicle, or 
pickup truck. 
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Survey, but this paper uses a much larger data set including households across all states in the 
U.S.  The larger data set not only provides more variation in the explanatory variables, but also 
provides enough observations so that proper out-of-sample forecasting can be executed. To our 
knowledge, this is the first paper in the literature that performs out-of-sample forecasts as an 
additional robustness check of the model.  

The paper is organized as follows: Section 2 describes the model used for estimation and 
the procedures for the Bayesian estimation; Section 3 discusses the data used in the study, and 
the statistical description of the variables; Detailed parameter estimation results and policy 
simulations are presented in Section  4; In Section  5, we perform out-of-sample forecasts to test 
the robustness of the model; and Section  6 concludes.  

2. Model 
The behavior of each household is characterized by five equations:  
 iii Dy x iα β ε∗ = + +  (1) 

 iiD z iγ η= +  (2) 
 
where  is a 4 by 1 vector of latent dependent variables for number of cars, number of trucks, 
mileage on cars, and mileage on trucks;  is a measure of density for households i  at the 
census block level, and is endogenous. The relation between the latent dependent variables and 
their observed values are:  
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The two equations of car and truck counts are modelled as bi-variate ordered probit, and the two 
equations of car and truck miles travelled are modelled as censored Tobit. Parameter 
identification of the ordered probit specifies the two cut points to be zero and one, and the 
variances be unrestricted (Nandrum and Chen 1996, Webb and Forster 2008, Fang 2008). 
Therefore, 0 0α =  and 1 1α = .  

ix  is a vector that contains household ’s demographics and its neighborhood 
characteristics;  is a vector of instrument variables that includes 

i
iz ix . The error terms ε  and η  

are normally distributed with mean zero, and with a 5 5×  covariance matrix  
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11 12 22σ− / −Σ Σ  gives the correlations between the endogenous density variable and the four 

dependent variables on vehicle ownership and usage, and measures the degree of endogeneity. 
We can rewrite Equations 1 and 2 in the following form:  



Brownstone and Fang  4 

 
0

0 0
ii ii

i ii

Dy x
D z

α
ε

β
η

γ

∗⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎛ ⎞ ⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

+  (4) 

 
Equation 4 can be simplified again as the following:  
 X UY φ∗ = +  (5) 

where , ( )ii DyY ′∗∗ ′= , (( ) )ii iX diag D zx ∗∗= , , , ( )φ α β γ′ ′ ′ ′, , , ( )U ε η′ ′ ′= , .  =
Due to the discrete nature of the system, the likelihood function involves integrals of 

multivariate normal densities. In this paper, we use data augmented Gibbs sampling for limited 
dependent variable models to avoid direct evaluation of the likelihood function (Albert and Chib 
1993, Li 1998, Fang 2008). There are three advantages of the approach used. First, using 
augmented latent variables avoids evaluation of the multivariate normal distributions and reduces 
computational costs. Second, it provides exact finite sample inference of the parameters and 
hence is free from the use of asymptotic approximations. Finally, we can easily take parameter 
uncertainty into account in deriving posterior and predictive densities for the function of interest 
(Li 1998).  

Let a normal prior for 0 0(N V )β β ,∼ , and an Inverse-Wishart for ( )IW QνΣ ,∼ . The 
Gibbs sampling procedure is as follows:  

Step 1: draw  conditional on iy∗
iD φ, ,Σ  from multivariate truncated normal distribution  

 12 12(ii D MVTNy )φ μ σ∗
| || , ,Σ ,∼  (6) 
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12 11 22 ( )iii iD Dx zμ α β σ γ−
| = + + Σ − , and 1
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Step 2: draw φ  conditional on iY ∗ , Σ  from multivariate normal distribution  
 (i )MVN VYφ ∗ φ| ,Σ ,∼  (7) 
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Step 3: draw  conditional on Σ iY ∗ , φ  from Inverse Wishart distribution  
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In this paper, the instrumental variable is the average MSA residential density measured 

by housing units per square mile. The correlation between the average MSA residential density 
and the residential density at the census block level is .433.  

The model system in equations (1) and (2) could be estimated by maximum likelihood 
methods, although given the multiple integrals in the likelihood function this would typically be 
done using simulation methods (see Train, 2003).  We have chosen to use Bayesian methods for 
both computational and statistical reasons.  Our Gibbs sampling procedure described above 
directly samples blocks of parameters and does not use any Metropolis-Hastings steps.  It 
therefore runs very quickly – typically less than a minute on a fairly slow laptop computer for the 
estimations described in Section 4 of this paper.  Maximum likelihood computation will typically 
be much slower because the log-likelihood function is not convex in the correlation parameters 
(off-diagonal elements in  ), and this requires manually restarting the optimization from 
different starting points to help find a global maximum. 

Σ
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Even if the maximum likelihood estimates are correctly calculated, there is still the 
problem of inference.  Most software either uses some numerical approximation to the inverse 
Hessian of the log likelihood or the “sandwich estimator” favored by Train (2003).  
Unfortunately these two different methods can give very different estimates, and there is no way 
to distinguish between them using standard asymptotic theory.  Even if the covariance estimates 
agree, there is still the problem of producing confidence regions for complex functions of the 
model parameters.  Hess and Daly (2009) show that it is quite complicated to get valid 
confidence intervals for relatively simple functions of the underlying parameters such as 
willingness to pay measures.  Their methods would be very difficult to implement for the policy 
simulations in Tables 3 and 4 or the predictions in Tables 6 and 7. 

The Bayesian methods used in this paper have clear prescriptions for inference.  
Confidence regions are given by highest posterior density regions, and confidence regions for 
complex functions of parameters and data can easily be calculated by using the draws of 
parameters from the Gibbs sampling scheme described earlier in this section.  It turns out that the 
highest posterior density regions for the parameters and policy simulations are symmetric and 
unimodal, so the intervals implied by posterior standard deviations reported in the tables in the 
rest of this paper are very good approximations to the highest posterior density regions. 

Bayesian methods do require a choice of prior distribution, and they may not have good 
repeated sampling properties.  Fortunately the inferences and estimates presented in this paper 
are not sensitive to different diffuse priors.  We carried out some Monte Carlo studies on the 
model in Fang (2008), and these studies confirmed that the Bayesian procedures were very 
similar to maximum likelihood and had good repeated sampling properties.  It is therefore likely 
that the methods used in this current paper also have good repeated sampling properties. 

3. Data 

We use data from the 2001 National Household Travel Survey (NHTS), a cross-section survey of 
a total of 69,817 households nationwide. Among them, 26,038 are in the national sample, and 
43,779 are from nine add-on areas, states or local jurisdictions that purchased additional 
households in their jurisdiction to be interviewed and included in the NHTS for area-specific 
studies. This paper only includes households in the national sample.  By merging the household 
file, vehicle file and person file, we obtain a sample of 25,057 households that contain detailed 
information on households’ demographics, various measures of land use density, vehicle 
properties including year, make, model, and complete estimates of annual miles traveled. Out of 
these 25,057 households, we randomly choose 5,863 households for estimation. The rest of the 
observations will be used for the out-of-sample forecast in Section 5. Households with missing 
information on various measures of density are dropped from the sample. Throughout the paper, 
we assume that whatever made people answer the survey is independent of density and vehicle 
choice, conditional on demographics. Hence the sample used for estimation can be seen as 
random.  

Explanatory variables include density and household demographic characteristics. 
Density is measured by housing units per square mile at the census block level, which is highly 
correlated with population per square mile and jobs per square mile. To capture local transit 
networks and non-motorized facilities, an indicator of whether or not the MSA has rail, and the 
number of bicycles in the households are considered. Demographic variables include total 
household annual income, the highest education level achieved within a household, household 
size, number of adults, children’s ages, home ownership, and urban/rural indictor of the 
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residence area.  
The summary statistics of the variables for the national sample and the sub-sample are 

listed in Table 1. Note that the average variable values largely agree between the national sample 
and the randomly drawn sub-sample.  

 
  

Table 1. Descriptive Statistics 
 

Variables  National  Subsample  
 Mean  (Std.)  Mean  (Std.)  

Observations  25,057  5,863  
Explanatory Variables   

Housing units/sq. mile (block)  1397  (1505)  1452  (1526)  
Population/sq. mile (block)  3638  (4657)  3799  (4834)  
Employment/sq. mile (tract)  1306  (1472)  1334  (1475)   
Housing units/sq. mile (tract)  1217  (1367)  1254  (1388)  

Population/sq. mile (tract)  3102  (4051)  3211  (4116)  
Number of adults  1.91  (0.70)  1.88  (.71)   

Number of children  .65  (1.05) .65  (1.05)  
Highest education achieved high school  30.6%   30.0%   

Highest education achieved bachelor  37.8 %   37.8%   
Youngest child under 6  14.6%   15.4%   

Youngest child between 6 and 15  17.2%   16.4%   
Youngest child between 15 and 21  5.9%   5.4%   

MSA has rail  22.1%   23.6%   
Resides in urban area (tract) 75.3%   77.1%   

Household income is between 20k and 30k  12.4%   12.2%   
Household income is between 30k and 50k  23%   22.0%   
Household income is between 50k and 75k  17.9%   17.4%   
Household income is between 75k and 100k 11%   10.3%   

Household income is greater than 100k  12%   12.7%   
Household owns home  80.1%   78.7%   

     
Vehicle Choice and Utilization     

Household owns no car 22.1%  22.4%  
Household owns one car 51.7%  51.9%  

Household owns two or more than two cars 26.2%  25.7%  
Household owns no truck 41.2%  43.6%  
Household owns one truck 38.2%  37.6%  

Household owns two or more than two trucks 20.6%  18.8%  
Average car miles per year conditional on 

owning cars 
11,470 10,021 11,362 9,648 

Average truck miles per year conditional on 
owning trucks 

12,982 10,669 13,082 11,320 
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4. Estimation Results 

Since we don’t want to impose a priori the possible effects of residential density on household’s 
vehicle type choice and utilization, we make the priors relatively noninformative.  We set the 
variance of the normal prior to be large and prior degree of freedom of the Wishart to be small.  
Specifically, we set 0β  to be a vector of zeros, and  to be a diagonal matrix with 100 on the 
diagonal, 

0V
ν  to be 10, and  an identity matrix. We check the effect of the prior by increasing 

the prior variance of 
Q

β  to reflect the noninformativeness of the prior. Since results obtained 
from the noninformative priors are virtually the same with the relatively noninformative prior 
mentioned above, we conclude that data information is predominant.  

In the Gibbs Sampler, we take 20,000 iterations and burn in the first 2,000 to mitigate 
start up effects and use the remaining draws to get posterior inferences. Table 2 lists the 
estimation results of the model. The five columns stands for the five equations estimated, with 
log of density at the census block level as dependent variable for the last equation. There is a 
close relationship between the possibly endogenous variable (the density at the census block 
level) and the instrument variable (average MSA density). Specifically, a 1 percent increase in 
the average MSA density is associated with approximately .57 percent increase in the density at 
the census block level.  

The effects of household demographics have expected signs. Household size is positively 
correlated with number of trucks and truck utilization, and is negatively correlated with number 
of cars and car utilization. Meanwhile, as the number of adults increases, both numbers of cars 
and trucks and their utilizations increase. Since the number of children in a household equals 
household size less number of adults, the above observation shows that when the number of 
children increases, it is more likely for the family to own trucks. Income has a significantly 
positive impact on vehicle holdings and utilization. Accessibility to public transit, such as rail, 
makes people choose fewer trucks and drive them less.  

After obtaining posterior draws of the parameters, we calculate the marginal effects of 
density on vehicle choices for each household and present the average effects across households. 
Table 3 shows the mean and standard deviation of the probability changes for holding zero, one, 
and two or more cars/trucks with respect to changes in density. When density increases by 50 
percent (a very large amount – see Downs, 2004, Chapter 12), the probability of not holding 
trucks increases by approximately 2.67 percentage points, and the probabilities of holding one 
truck and two trucks decrease by around 1.07 and 1.60 percentage points respectively. These 
changes are around two times bigger than those obtained in Fang (2008), in which only 
California data are used and endogeneity left uncorrected. In that study, when density increases 
by half, the probability of not holding trucks increases by approximately 1.2 percentage point, 
and the probabilities of holding one truck and two trucks decrease by around .75 and .46 
percentage point respectively. Qualitatively, however, the two sets of results largely agree - 
residential density has a modest and statistically significant impact on truck ownership.  If we 
further increase residential density to the extent that it doubles, the reduction in truck ownership 
deepens by modest 4.56 percentage points.   
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Table 2. Coefficient Estimates 
 

Variable  Coefficient  
 number of number of annual avrg annual avrg  Log of  
 cars  trucks  car miles  truck miles  block   
   (in 1,000)  (in 1,000)  density  

log(block density)  0.0375 -0.1969  0.0342 -3.2304  -   
 (0.0433)  (0.0455) (0.4929) (0.6602)  -  

Number of bikes  -0.0273  0.1093  -0.1293  1.2140  0.0138   
 ( 0.0130 )  ( 0.0130 )  ( 0.1480 )  ( 0.2097 )  (0.0127)   

Household size  -0.1204  0.0980  -1.1827  2.1654  -0.0317   
 ( 0.0270 )  ( 0.0274 )  ( 0.3115 )  ( 0.4278 )  ( 0.0262 )  

Number of adults  0.3239  0.1671  3.5415  1.5293  -0.0113   
 ( 0.0346 )  ( 0.0358 )  ( 0.4002 )  ( 0.5610 )  ( 0.0336 )  

Urban  -0.0039  0.1747  -1.0355  3.1176  2.4098   
 ( 0.1250 )  ( 0.1298 )  ( 1.4218 )  ( 1.9134 )  ( 0.0385 )  

Income between 20k and 30k  0.1255  0.3805  1.1598  5.5918  -0.0032   
 ( 0.0561 )  ( 0.0614 )  ( 0.6343 )  ( 0.9864 )  ( 0.0532 )  

Income between 30k and 50k  0.1554  0.5828  2.4567  8.7760  -0.0686   
 ( 0.0501 )  ( 0.0556 )  ( 0.5693 )  ( 0.8782 )  ( 0.0483 )  

Income between 50k and 75k  0.1347  0.7135  2.7229  11.8910  -0.1108   
 ( 0.0553 )  ( 0.0603 )  ( 0.6334 )  ( 0.9540 )  ( 0.0539 )  

Income between 75k and 100k  0.3262  0.6780  4.2178  11.4340  -0.1700   
 ( 0.0655 )  ( 0.0697 )  ( 0.7414 )  ( 1.1015 )  ( 0.0641 )  

Income greater than 100k  0.2539  0.7526  3.9113  12.8280  -0.3294   
 ( 0.0660 )  ( 0.0700 )  ( 0.7490 )  ( 1.1065 )  ( 0.0646 )  

Income data missing  0.2381  0.2795  0.6552  3.7614  -0.1050   
 ( 0.0650 )  ( 0.0731 )  ( 0.7459 )  ( 1.1589 )  ( 0.0631 )  

Owns home  0.0675  0.3937  -0.4018  3.3768  -0.3576   
 ( 0.0423 )  ( 0.0458 )  ( 0.4828 )  ( 0.7257 )  ( 0.0372 )  

MSA has rail  0.0598  -0.1962  0.2095  -2.0256  -0.0203   
 ( 0.0421 )  ( 0.0449 )  ( 0.4758 )  ( 0.7046 )  ( 0.0413 )  

Highest education: high school  0.1008  -0.0022  1.1975  0.6450  0.0217   
 ( 0.0385 )  ( 0.0402 )  ( 0.4415 )  ( 0.6449 )  ( 0.0375 )  

Highest education: Bachelor  0.2265  -0.1654  2.5117  -1.1363  0.1622   
 ( 0.0421 )  ( 0.0441 )  ( 0.4815 )  ( 0.7033 )  ( 0.0403 )  

Youngest child under 6  0.1033  0.1264  2.4547  2.1375  -0.0254  
 ( 0.0711 )  ( 0.0730 )  ( 0.8176 )  ( 1.1478 )  ( 0.0695 )  

Youngest child between 6 and 15  0.1197  0.0873  2.1364  1.3270  -0.0418   
 ( 0.0634 )  ( 0.0649 )  ( 0.7299 )  ( 1.0186 )  ( 0.0619 )  

Youngest child between 15 and 21  0.0779  -0.1235  2.0036  0.4597  -0.0193   
 ( 0.0683 )  ( 0.0717 )  ( 0.7839 )  ( 1.1416 )  ( 0.0685 )  

log(average MSA Density)  -  -  -  -  0.5743   
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 -  -  -  -  ( 0.0244 )  
Notes: The base groups are households with income below 20k, do not own home, are high school dropout,  

have no children, and live in rural area. Posterior standard deviations are reported in parentheses;  
 

Residential density affects households’ choice of cars with a much smaller scale and in a 
less significant way. When density increases by 50 percent, the probability of holding zero cars 
decreases by .47 percentage points, that of holding one car increases by .05 percentage points, 
while the probability of holding two or more cars increases by .42 percentage points.  

Table 3 shows that the demand for car ownership is inelastic with respect to residential 
density, but the demand for truck ownership is relatively more elastic. The intuition is that the 
demand for vehicles is largely influenced by income, the life cycle of the family, number of 
children, and many factors other than residential density.  As will be shown later, however, 
vehicle utilization is more susceptible to residential density variation.  When we add the effects 
of vehicle ownership change and utilization reduction together, we found that residential density 
has a fairly large impact on energy consumption.   
 

Table 3. Changes in vehicle choice when block density increases 

 
% changes in  Probability changes for truck choice  

density  Δ P(tnum=0) Δ P(tnum=1) Δ P(tnum 2) ≥
10 %  .0063  -.0024  -.0038  

 (.0014) (.0005)  (.0009)  
25 %  .0147  -.0058  -.0089   

 (.0032)  (.0012)  (.0020)  
50 %  .0267  -.0107  -.0159   

 (.0058)  (.0023)  (.0035)  
100% .0456 -.0190 -.0265 

 (.0099) (.0042) (.0058) 
  

% changes in  Probability changes for car choice   
density  Δ P(cnum=0) Δ P(cnum=1) Δ P(cnum 2) ≥
10 %  -.0011  .0001  .001  

 (.0013)  (.0002)  (.0011)  
25 %  -.0026  .0003  .0023  

 (.0030)  (.0004)  (.0026)  
50 %  -.0047  .0005  .0042  

 (.0054)  (.0007)  (.0048)  
100% -.0080 .0008 .0072 

 (.0092) (.0010) (.0083) 
Notes: posterior standard deviations are reported in parentheses  

 
Table 4 shows that changes in density do not seem to affect car utilization. Annual 

average miles driven in cars by a household would only increase by around 14 miles when 
housing units per square mile increases by 50 percent. Even when the housing density doubles, 
the annual average car utilization would merely increase by about 24 miles.   On the contrary, 
annual average miles of trucks respond more sharply to density changes. When housing units per 
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square mile increases by 50 percent, utilization of truck would decrease by approximately 610 
miles, with a standard deviation of about 118 miles. This effect is in the same scale as that found 
in Fang (2008), in which a 50 percent increase in density will reduce truck utilization by about 
562 miles.  Doubling the residential density would reduce annual average truck miles by about 
1004 miles, which is a 13.6-percent reduction in truck utilization.  

 

Table 4. Changes in vehicle miles when density increases 
 

 Δ car miles %Δ car 
miles  

Δ truck 
miles  

% truck 
miles  
Δ

10 %  3.23 .04  -149.63  -2.03  
 (46.29)  (.53)  (29.76)  (.40)  

25 %  7.63  .08  -344.34  -4.67   
 (108.34) (1.23) (67.61)  (.92)  

50 %  14.02  .16  -610.5  -8.27  
 (196.79) (2.23)  (117.66)  (1.59)  

100% 24.37 .28 -1003.6 -13.6 
 (336.14) (3.82) (187.23) (2.54) 
Notes: posterior standard deviations are reported in parentheses  

 
We can also obtain an approximation of residential density’s marginal effect on energy 

consumption using vehicle fuel efficiency data and density’s marginal effect on vehicle type 
choice and utilization.  In our sample, average fuel efficiency of cars is 21.8 miles per gallon, 
and average fuel efficiency of trucks is 16.6 miles per gallon.  The 5863 households in our 
sample drive a total of 74 million car miles and 61 million truck miles per year, equivalent to a 
total consumption of 3.4 million gallons by car usage and 3.7 million gallons by truck usage.  
When density doubles, we redistribute cars and trucks among the 5863 households using 
probability changes presented in Table 3.  Because we classify number of vehicles equal or 
larger than two as one group, the redistribution of cars/trucks among families with cars/trucks 
exceeding quantity one is done based on the assumption that the percentage of two, three,… etc. 
vehicles in the group remain constant before and after the density change.  This assumption is 
conservative because one would expect the vehicle number distributed more towards smaller 
numbers when density increases.  By holding constant the vehicle distribution for households 
with two or more vehicles, we provide an downward biased estimate of marginal effect of 
density increase.  Average car/truck miles after the density increase can be easily calculated 
using the percentage changes in vehicle miles presented in Table 4.  With the new distribution of 
cars and trucks among the households in the sample, and new average car/truck miles, we 
calculate the total energy consumption by the 5863 households after the density doubling to be 
3.4 million gallons by car usage and 2.2 million gallons by truck usage.  The energy usage of 
cars barely changes at all by increasing about 1.8 percent, and the energy usage of trucks 
decreases by about 40.7 percent.  This amounts to a substantial reduction of 1.4 million gallons, 
or 20 percent, of total gasoline consumption by vehicle usage.  

Table 5 shows the correlation matrix of the structural error matrix . We find that the 
unobserved characteristics affecting number of cars held and number of trucks held have a 
negative correlation of -.40. The correlation between miles driven by cars and miles driven by 
trucks is -.15. This indicates a substitution effect between cars and trucks, not only type-wise but 

Σ
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also usage-wise. The unobserved characteristics that make people to live in dense areas also tend 
to make people choose more trucks, and drive more truck miles. The correlation, controlled for 
observed characteristics, between density and the number of trucks is .09 with a standard 
deviation of .051, and that between density and average truck miles is .1 with a standard 
deviation of .044. Hence we conclude that controlling for the endogeneity of the density variable 
is necessary in the estimation.  

 

Table 5. Correlation Matrix of Structural Errors (Σ ) 
 

 number of 
cars  

number of 
trucks  

avrg car mile avrg truck 
mile  

density  

number of cars  1.00  -  - -  -  
number of trucks  -.40  1.00  -  -  -  

 (.014)     
avrg car mile  .53  -.29  1.00  -  -  

 (.011)  (.015)     
avrg truck mile  -.31  .59  -.15  1.00  -  

 (.015)  (.011)  (.015)    
density  -.016  .09  -.04  .1  1.00   

 (.049)  (.051)  (.046)  (.044)   
Notes: Highest posterior standard deviations are reported below each correlation   

 
 

5. Prediction 

As a robustness check, we carry out the out-of-sample forecast of vehicle choice and utilization 
for random observations from the rest of the national sample. Generally, the Bayesian predictive 
probability distribution function of the future observable dependent variable py  can be expressed 
as the following,  

 ( ) ( ) ( )p pf f f d dβ β β| = | , ,Σ ,Σ | Σ∫ ∫y y y y y  (9) 
where  is the in-sample data used for estimation, and y (f )β,Σ | y  is the posterior distribution of 
the parameters. Since Equation  9 cannot be solved analytically, one may use the following 
strategy (Koop 2003) in the same fashion of a Markov Chain Monte Carlo to obtain draws of py  
that can be considered to be from the predictive probability distribution:  

Step 1: Get draws of s sβ ,Σ  from the posterior (f )β,Σ | y . In this case, they are simply 
draws from the Gibbs Sampler from the in-sample estimation.  

Step 2: Draw psy  from a multivariate Normal distribution of ( )s sMVN X β ,Σ .  
With sequence of random draws of psy , we can obtain the mean and standard deviation 

of its predictive distribution. One complication with the prediction in this paper is that the 
dependent variables are not continuous, but limited. Therefore, additional steps are needed to 
obtain the quantitative probabilistic predictions for vehicle ownership. For example, if we would 
like to predict the probability of having zero car for a particular household, we obtain the 



Brownstone and Fang  12 

probability that the latent utility towards having zero car, 1 0py ∗ < , from the following:  

 

1
0

1 1

Prob( 0 )

( )

p

p p

y y

f y y dy

∗

∗ ∗

−∞

< |

= |∫  

(substitute in Equation 9) 
0

1 1( ) ( )p pf y y f y d d dyβ β β∗ ∗

−∞

⎛ ⎞| , ,Σ ,Σ | Σ⎜ ⎟
⎝ ⎠
∫ ∫∫  

(Fubini´s Theorem) =  
0

1 1( ) ( )p pf y y dy f y d dβ β
⎛ ⎞∗ ∗⎜ ⎟
⎜ ⎟−∞⎝ ⎠

β| , ,Σ ,Σ | Σ∫ ∫ ∫  

=  1Prob( 0 ) ( )py y f y d dβ β β∗ < | , ,Σ ,Σ | Σ∫ ∫  
 

 
The steps needed to calculate the above probability are:  
Step 1: Get draws of s sβ ,Σ  from the posterior ( )f β,Σ | y .  

Step 2: Calculate 1

11
( )

s

s
XsP β
σ

−= Φ .  

Step 3: Averaging across all the probability draws, 1
1 1

Prob( 0 ) Np s
N s

y y∗
=

< | ≈ P∑ .  
 

Calculation for the other predictive probabilities follows the same procedure. A number 
of random samples are taken to perform the prediction, and the forecast results from which all 
follow the same pattern. Table 6 lists the actual and predicted number of households that hold 
zero, one, and two or more cars/trucks for a random sample of 101 and a random sample of 4991 
observations. The prediction for zero car, one car, one truck, and two and more trucks are in the 
ball-park of the actual values, taking standard deviations into account. But the model consistently 
underestimates the number of households for holding two or more cars and overestimates the 
number of households not holding trucks.  

 

Table 6. Predicted number of households 
 

 c=0  c=1  c ≥  2 t=0  t=1  t ≥  2  
 Random sample of 101 obs.   

Predicted number of households  26  54  21  50  35  16   
(standard deviation)  (.6)  (.7)  (.5)  (.6)  (.7)  (.6)  

True number of households  24  49  28  49  33  19   
 Random sample of 4991 obs.   

Predicted number of households  1301 2677 1013 2413 1774.6  804  
(standard deviation) (28.8) (33.8) (25.5) (29.7)  (34.9)  (25.9) 

True number of households  1060 2601 1330 2165 1884  942  
 
 
Forecasts for vehicle miles perform much better than those for vehicle type choice 
aforementioned, as are shown in Table 7. The predicted average miles are more accurate for a 
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random sample of 4,991 households than for that of 101 households, presumably due to 
simulation errors, as reflected by the difference in standard deviations. For a sample of 101 
households, the predicted car utilization is 9,155 miles, 16 miles less than the true value, and the 
predicted truck utilization is 7,592 miles, less than two standard deviations away from the true 
value. For a random sample of 4,991 households, the predicted average miles driven by cars is 
9,114, 21 miles less than the actual value observed; the predicted average miles driven by truck 
is 7,649, 445 miles higher than the actual value.  
 

Table 7. Predicted average miles driven for households in the sample 
 

 average miles by cars  average miles by trucks  
 Random sample of 101 obs.   

Forecast  9155.6  7592.4   
(standard deviation)  (927.6)  (1018.7)   

True  9171.9  5882.2  
 Random sample of 4991 obs.   

Forecast  9113.6  7649.3  
(standard deviation) (178.9)  (210.6)   

True  9135  7204.4   
 

It is difficult to interpret the results of the out of sample predictions discussed above.  
Ideally we would like the posterior forecast intervals to always contain the true values, but 
failure to reach this ideal does not necessarily imply that the model is performing worse than 
other models used for this type of work.  Until other models are subjected to these out of sample 
forecasting exercises it will be difficult to judge the results. 

 

6. Conclusion 

This paper extends the model in Fang (2008) to include the possibility of unobserved factors that 
affect both vehicle choice and density choice - an endogeneity problem that might bias the 
estimation results. We control for part of this by using disaggregate data and detailed household 
characteristics. More importantly, we utilize an instrument variable, average MSA density, in the 
estimation to correct for the endogeneity.  We apply this model to the 2001 NHTS survey data, 
and we find statistically significant error correlations indicating endogeneity bias.  However, the 
magnitude of this bias is small and our results are qualitatively and quantitatively similar to Fang 
(2008).  
 
The results show that even a very large increase in residential density has a negligible effect on 
car choice and utilization, but slightly reduces truck choice and utilization.  Since trucks are 
considerably less efficient than cars due to differences in fuel economy regulations in the U.S., 
fuel consumption is reduced by a larger amount.  The changes in residential density used in our 
policy simulations are very large, and it is very unlikely that these changes will occur except in 
isolated new developments.  The Bayesian confidence intervals are quite narrow, so these results 
are precisely estimated.  To further test the robustness of the model, we perform forecasting on a 
number of random samples from the population.  We find that the predicted values are largely 
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consistent with the true values, more so for vehicle utilization than vehicle choice, confirming 
the robustness of the model used.  
 
The model used here only looks at the choice of cars and trucks, but U.S. fuel economy standards 
imply that this split is responsible for most of the differences in fuel economy.  Fang (2008) 
extended the model to split trucks and cars into large and small subcategories, but the qualitative 
and quantitative results were not changed.  The New York MSA is frequently an outlier in 
studies of vehicle use due to its high density and high share of transit use.  The appendix re-
estimates our model excluding the New York MSA, and we find that our results are essentially 
unchanged.  This suggests that the sociodemographic variables included in our model effectively 
capture the differences between New York and the rest of the country. 
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Appendix: Estimation of Tables 3, 4, and 5 excluding the New 
York MSA : 

Table 8. Coefficient Estimates 
Variable  Coefficient  

 number of number of annual avrg annual avrg  Log of  
 cars  trucks  car miles  truck miles  block   
   (in 1,000) (in 1,000)  density  

log(block density)  0.0492  -0.2039  0.2201  -3.1961  -  
 ( 0.0445 ) ( 0.0480 ) ( 0.5072 ) ( 0.6641 )  -  

Number of bikes  -0.0303  0.1085  -0.1281  1.1545  0.0151   
 ( 0.0133 ) ( 0.0135 ) ( 0.1530 ) ( 0.2072 )  ( 0.0129 )  

Household size  -0.1351  0.1015  -1.2631  1.9227  -0.0235   
 ( 0.0277 ) ( 0.0283 ) ( 0.3201 ) ( 0.4275 )  ( 0.0270 )  

Number of adults  0.3463  0.1595  3.6115  1.6839  -0.0221   
 ( 0.0363 ) ( 0.0371 ) ( 0.4163 ) ( 0.5654 )  ( 0.0351 )  

Urban  -0.0473  0.2114  -1.6378  3.2418  2.4392   
 ( 0.1300 ) ( 0.1396 ) ( 1.4905 ) ( 1.9448 )  ( 0.0391 )  

Income between 20k and 30k  0.1107  0.3987  1.1120  5.7851  0.0024   
 ( 0.0575 ) ( 0.0629 ) ( 0.6628 ) ( 0.9794 )  ( 0.0555 )  

Income between 30k and 50k  0.1339  0.5919  2.4171  8.7623  -0.0674   
 ( 0.0517 ) ( 0.0561 ) ( 0.5955 ) ( 0.8643 )  ( 0.0496 )  

Income between 50k and 75k  0.1079  0.7342  2.6215  11.6860  -0.1051   
 ( 0.0569 ) ( 0.0615 ) ( 0.6524 ) ( 0.9417 )  ( 0.0558 )  

Income between 75k and 100k  0.3102  0.6788  4.1733  11.3900  -0.1832   
 ( 0.0677 ) ( 0.0721 ) ( 0.7723 ) ( 1.1044 )  ( 0.0661 )  

Income greater than 100k  0.2307  0.7533  3.9036  12.6610  -0.2888   
 ( 0.0683 ) ( 0.0722 ) ( 0.7830 ) ( 1.0999 )  ( 0.0666 )  

Income data missing  0.2240  0.2695  0.6353  3.4862  -0.1083   
 ( 0.0678 ) ( 0.0747 ) ( 0.7795 ) ( 1.1687 )  ( 0.0647 )  

Owns home  0.0550  0.4076  -0.4725  3.3606  -0.3448   
 ( 0.0427 ) ( 0.0473 ) ( 0.4946 ) ( 0.7259 )  ( 0.0380 )  

MSA has rail  0.0627  -0.1910  0.5114  -2.1291  0.0101   
 ( 0.0447 ) ( 0.0487 ) ( 0.5135 ) ( 0.7320 )  ( 0.0434 )  

Highest education: high school  0.1128  -0.0117  1.2880  0.5475  0.0274   
 ( 0.0397 ) ( 0.0415 ) ( 0.4586 ) ( 0.6454 )  ( 0.0384 )  

Highest education: Bachelor  0.2219  -0.1589  2.4910  -1.0394  0.1605   
 ( 0.0431 ) ( 0.0450 ) ( 0.4969 ) ( 0.6940 )  ( 0.0420 )  

Youngest child under 6  0.1368  0.1083  2.4931  2.3481  -0.0342   
 ( 0.0734 ) ( 0.0755 ) ( 0.8450 ) ( 1.1509 )  ( 0.0713 )  
Youngest child between 6 and 15  0.1501  0.0765  2.3366  1.4450  -0.0427   

 ( 0.0651 ) ( 0.0671 ) ( 0.7497 ) ( 1.0135 )  ( 0.0636 )  
Youngest child between 15 and 21 0.0959  -0.1383  2.2486  0.3411  -0.0269   
 ( 0.0701 ) ( 0.0736 ) ( 0.8226 ) ( 1.1326 )  ( 0.0704 )  
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log(average MSA Density)  -   -  -  (0.5690)  
 -  -  -  -  0.0246   

Notes: The base groups are households with income below 20k, do not own home, are high school dropout,  
have no children, and live in rural area. Posterior standard deviations are reported in parentheses;  

 
 

Table 9. Changes in vehicle choice when block density increases 
 

% changes in  Probability changes for truck choice  
density  Δ P(tnum=0) Δ P(tnum=1) Δ P(tnum 2) ≥
10 %  .0065  -.0024  -.004   

 (.0014)  (.0005)  (.0009)  
25 %  .0152  -.0058  -.0093   

 (.0034) (.0012)  (.0021)  
50 %  .0276  -.0109  -.0167   

 (.0061)  (.0024)  (.0038)  
100% .0471 -.0193 -.0278 

 (.0104) (.0043) (.0062) 
  

% changes in  Probability changes for car choice   
density  Δ P(cnum=0) Δ P(cnum=1) Δ P(cnum 2) ≥
10 %  -.0014 .0002 .0013  

 (.0013)  (.0002)  (.0011)  
25 %  -.0034  .0005  .0030   

 (.0031)  (.0004)  (.0027)  
50 %  -.0062  .0008  .0054  

 (.0056)  (.0007)  (.0050)  
100% -.0105 .0011 .0094 

 (.0094) (.0010) (.0085) 
Notes: posterior standard deviations are reported in parentheses  

 

Table 10. Changes in vehicle miles when density increases 
 

 Δ car miles %Δ car 
miles  

Δ truck 
miles  

% truck 
miles  
Δ

10 %  20.64 .23  -153.01  -2.07  
 (47.52)  (.54)  (30.66)  (.42)  

25 %  48.40  .55  -352.15  -4.77   
 (111.29) (1.26) (69.61)  (.94)  

50 %  88.10  .10  -624.33  -8.46  
 (202.31) (2.30)  (121.06)  (1.64)  

100% 151 1.71 -1026.1 -13.90 
 (345.97) (3.91) (192.69) (2.61) 
Notes: posterior standard deviations are reported in parentheses  

 


	Abstract
	 1. Introduction
	2. Model
	3. Data
	Explanatory Variables
	Vehicle Choice and Utilization
	Household owns no car
	Household owns one car
	Household owns two or more than two cars
	Household owns no truck
	Household owns one truck
	Household owns two or more than two trucks
	Average car miles per year conditional on owning cars
	Average truck miles per year conditional on owning trucks


	 4. Estimation Results
	5. Prediction
	6. Conclusion
	 References
	 Appendix: Estimation of Tables 3, 4, and 5 excluding the New York MSA :

